Effect of cohesion on shear banding in quasistatic granular materials.
نویسندگان
چکیده
Cohesive powders have widely different bulk behavior due to their peculiar interactions. We use discrete element simulations to investigate the effect of contact cohesion on the steady state flow of dense powders in a slowly sheared split-bottom Couette cell, which imposes a wide stable shear band. The intensity of cohesive forces can be quantified by the granular Bond number (Bo), namely the ratio between maximum attractive force and average force due to external compression. We find that the shear banding phenomenon is almost independent of cohesion for Bond numbers Bo<1, however for Bo≥1 cohesive forces start to play an important role, as both width and center position of the band increase. Inside the shear band, the mean normal contact force is independent of cohesion and depends only on the confining stress. In contrast, when the behavior is analyzed focusing on the eigendirections of the local strain rate tensor, a dependence on cohesion shows up. Forces carried by contacts along the compressive and tensile directions are symmetric about the mean force (larger and smaller respectively), while the force along the third, neutral direction follows the mean force. This anisotropy of the force network increases with cohesion, just like the heterogeneity in all (compressive, tensile and neutral) directions.
منابع مشابه
Shear bands in granular flow through a mixing length model
Abstract. We discuss the advantages and results of using a mixing-length, compressible model to account for shear banding behaviour in granular flow. We formulate a general approach based on two function of the solid fraction to be determined. Studying the vertical chute flow, we show that shear band thickness is always independent from flowrate in the quasistatic limit, for Coulomb wall bounda...
متن کاملReply to "Comment on 'Flow of wet granular materials: A numerical study' ".
In his Comment on our paper [Phys. Rev. E 92, 022201 (2015)10.1103/PhysRevE.92.022201], Chareyre criticizes, as inaccurate, the simple approach we adopted to explain the strong enhancement of the quasistatic shear strength of the material caused by capillary cohesion. He also observes that a similar form of the "effective stress" approach, accounting for the capillary shear stress, which we neg...
متن کاملOn Critical States, Rupture States and Interlocking Strength of Granular Materials
The Mohr-Coulomb theory of strength identifies cohesion and internal friction as the two principal contributions to the shear strength of a granular material. The contribution of cohesion in over-compacted granular materials has been challenged and replacing cohesion with interlocking has been proposed. A theory of rupture strength that includes interlocking is derived herein. The physics-chemi...
متن کاملEffect of rolling on dissipation in fault gouges.
Sliding and rolling are two outstanding deformation modes in granular media. The first one induces frictional dissipation whereas the latter one involves deformation with negligible resistance. Using numerical simulations on two-dimensional shear cells, we investigate the effect of the grain rotation on the energy dissipation and the strength of granular materials under quasistatic shear deform...
متن کاملUniversality of shear-banding instability and crystallization in sheared granular fluid
The linear stability analysis of an uniform shear flow of granular materials is revisited using several cases of a Navier-Stokes’-level constitutive model in which we incorporate the global equation of states for pressure and thermal conductivity (which are accurate up-to the maximum packing density νm) and the shear viscosity is allowed to diverge at a density νμ (< νm), with all other transpo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 90 2 شماره
صفحات -
تاریخ انتشار 2014